Lewy Body Dementia and the SNCA Gene

Lewy body dementia—a progressive neurodegenerative disease

Lewy body dementia symptoms differ from Parkinson's and Alzheimer's disease symptoms

	PD	DLB	AD
Dementia	Later onset, usually 1 year after parkinsonism onset. Less prominent than DLB &AD	Earlier compared to PD, less than a year after parkinsonism. Compared to AD, visuospatial and visual memory more severe.	Prominent features
Fluctuation of cognitive impairment	Absent	Present	Absent
Visual Hallucination	Not common	Common, usually non-threatening and insight remain.	Not common
Parkinsonism	Prominent features	Relatively mild, rarely asymmetry, tremor not prominent	Rarely present

Lewy bodies result from misfolded alpha synuclein proteins

SNCA is associated with Lewy Body Dementia

Synuclein

Copper binding

Neurotransmission

Localizes in the cytoplasm

SNCA is highly conserved across species

Macague 0.0122

Chimpanzee 0

Human 0 Gorilla 0

Alpha synuclein interacting proteins in Zebrafish are important for brain function

What is the primary goal?

Determine how SNCA regulates dopamine expression in neurons

Zebrafish as a model organism for Lewy Body Dementia

Easily observed neurons and mutant phenotype, similar brain structure

Huang et al (2015)

Aim 1:Identify conserved amino acids in alpha synuclein important for dopamine release

Aim 2: Identify small molecules that rescue SNCA mutant behavioral phenotypes

AIMS

Aim 3: Identify proteins that interact with alpha synuclein that are important for dopamine release

Hypothesis: SNCA is used to regulate dopamine release machinery

Aim 1: Identify conserved amino acids in alpha synuclein important for dopamine release

Aim 1: CRISPR highly conserved amino acids to determine their influence on dopamine expression

Aim 1: Assay zebrafish locomotor behavior and dopamine expression

Mutant A

Dopaminergic neurons

Mutant B

Locomotor behavior

Dopaminergic neurons

Aim 2: Identify small molecules that rescue SNCA mutant behavioral phenotypes

Wild type

Mutant A

Mutant B

Chemical library

Chemical library

1
2
3
4
5
6
7
8
9
10
11
12

B
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0</t

Chemical library

Aim 2: Assay zebrafish to determine if molecule interactions affect dopamine expression

Dopamine expression

No small molecule interaction

Dopamine expression

Small molecule interaction, dopamine rescue

Aim 2: Assay zebrafish behavior to determine if molecule interactions rescue dopamine expression

No small molecule interaction Interaction, dopamine rescue

Dopaminergic neurons

Dopaminergic neurons

Mutant B locomotor behavior

Dopaminergic neurons

Aim 3: Use Co-IP to identify proteins that interact with alpha synuclein

Aim 3: Differences in protein interactions could identify proteins that are important for dopamine release

Future directions

Identify the function of the unknown proteins in the SNCA protein interaction network

Conclusions

Highly conserved amino acids are likely important in dopamine expression

Small molecules that rescue mutant behavioral phenotypes may aid in dopamine release

Protein interactions that differ from wild type are likely involved in dopamine expression

Questions?

References

- 1. <u>http://biobunch.blogspot.com/2013/11/biology-behind-dementia.html</u>
- 2. https://teddybrain.wordpress.com/2013/01/04/dementia-with-lewy-bodies-dlb-2/
- 3. http://n.neurology.org/content/71/12/903
- 4. <u>http://www.grs-sim.de/research/computational-biophysics/research-activity/neurodegenerative-diseases.html</u>
- 5. http://macintoshcells.wikispaces.com/Cytoplasm+2
- 6. http://essays.biochemistry.org/content/60/2/173
- 7. <u>http://www.scicurious.org/back-to-basics-1-neurotransmission/</u>
- 8. Siddiqui IJ, Pervaiz N, Abbasi AA. (2016). The Parkinson Disease gene SNCA: Evolutionary and structural insights with pathological implication. *Scientific Reports*, 6:24475. doi:10.1038/srep24475
- 9. Huang, J., Zhong, Z., Wang, M., Chen, X., Tan, Y., Zhang, S., He, W., He, X., Huang, G., Lu, H., Wu, P., Che, Y., Yan, Y., John, P. H., Chen, W., Wang, H. (February, 2015). Circadian Modulation of Dopamine Levels and Dopaminergic Neuron Development Contributes to Attention Deficiency and Hyperactive Behavior. *The Journal of Neuroscience*, 35 (6); 2572-2587. DOI: https://doi.org/10.1523/JNEUROSCI.2551-14.2015
- 10. <u>https://science.nichd.nih.gov/confluence/display/newsletter/2013/06/08/Four+NICHD+Postbacs+Receive+OITE+Poster+Award</u>
- 11. <u>https://science.nichd.nih.gov/confluence/display/newsletter/2013/06/08/Four+NICHD+Postbacs+Receive+OITE+Poster+Award</u>
- 12. https://www.smashwords.com/extreader/read/285005/2/meet-the-zebrafish-a-short-guideto-keeping-breeding-and-understanding-the-zebrafish-danio-rerio-in-your-home-aquarium
- 13. https://thechelseascrolls.com/tag/brain-use/